The Cohomology Rings of Complements of Subspace Arrangements
نویسنده
چکیده
The ring structure of the integral cohomology of complements of real linear subspace arrangements is considered. While the additive structure of the cohomology is given in terms of the intersection poset and dimension function by a theorem of Goresky and MacPherson, we describe the multiplicative structure in terms of the intersection poset, the dimension function and orientations of the participating subspaces for the class of arrangements without pairs of intersections of codimension one. In particular, this yields a description of the integral cohomology ring of complex arrangements conjectured by Yuzvinsky. For general real arrangements a weaker result is obtained. The approach is geometric and the methods are elementary.
منابع مشابه
On Cohomology Algebras of Complex Subspace Arrangements
The integer cohomology algebra of the complement of a complex subspace arrangement with geometric intersection lattice is completely determined by the combinatorial data of the arrangement. We give a combinatorial presentation of the cohomology algebra in the spirit of the Orlik-Solomon result on the cohomology algebras of complex hyperplane arrangements. Our methods are elementary: we work wit...
متن کاملRing structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کاملHomotopy Types of Complements of 2-arrangements in R
We study the homotopy types of complements of arrangements of n transverse planes in R4, obtaining a complete classification for n ≤ 6, and lower bounds for the number of homotopy types in general. Furthermore, we show that the homotopy type of a 2-arrangement in R4 is not determined by the cohomology ring, thereby answering a question of Ziegler. The invariants that we use are derived from the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000